
ference, to determine the average densities in the stagnant zone to within 15%. The quality 
of the numerical solution is improved when the bow shock wave is isolated or the grid is made 
finer in the shock layer (in the calculation of i0 cells in the shock layer). A modification 
of the calculating model is required to increase the accuracy of the solution in the separation 
zone: The Reynolds equations must be used jointly with any of the multiparametric models of 
turbulence in the entire separation zone. 

NOTATION 

d, disk diameter; D, body diameter; ~, disk extension; ~, thickness of the shear layer; 
x*, coordinate along the shear layer; vt, turbulent viscosity; cn, ct, empirical constants; 
Cx, Cxb, Cxw, coefficients of total aerodynamic, base, and wave resistance. 
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INFLUENCE OF THERMAL RADIATION ON THE STRUCTURE 

OF THE TEMPERATURE FIELD IN A TURBULENT FLOW 

V. P. Kabashnikov and A. A. Kurskov UDC 536.24:532.517.4 

The form of the structural function for temperature fluctuations in the turbulent 
flow of a radiation gas is set up theoretically. 

An important characteristic of the temperature field in a turbulent flow is the structur- 
al function for the temperature [I], which is a dependence of the root-mean-square of the tem- 
perature difference at two points on the distance between them. The structural function char- 
acterizes the amplitude of the temperature fluctuations of different spatial scales and, there- 
fore, also the microstructure of the temperature field. 

The form of the structural function for nonradiation media was first set up in [2, 3]. 
The influence of radiation on turbulent temperature fluctuations was investigated in [4-8]. 
Paper [7], where conditions were indicated for which the times of radiative decay of the tem- 
perature perturbations of different scales are comparable to the times of hydrodynamic decay, 
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is closest in subject matter to the present paper. In substance, these are conditions for 
which radiation Starts to influence the structural function. However, the very form of the 
structural function in a radiating medium has apparently not been examined up to now. 

The temperature field in a statistically homogeneous infinite gas medium with thermal 
radiation taken into account is described by the equation 

/-----~) + v(x,  t ) v T ( x ,  t) xAT(x,  t ) + q ( x ,  O--4~(9cp)-~idoJx~j'dzW(z)[Bo,(x , t ) - -  B,o (x - -  z, t)], ( 1 )  
OT (x, 

Ot o 

where T(x,. t) and v(x, t) are, respectively, the gas temperature and velocity at a point x at 
a time t; Bm is the Planck function; e is the radiation frequency; K~ is the absorption coef- 
ficient; q(x, t) is the power of random heat sources; and 

W (z) = (4~z~)-~• exp (--• ( 2 )  

Fo r  s i m p l i c i t y ,  we e x a m i n e  a " g r a y ,  gas  (<~ = K) and we assume  t h a t  p and • a r e  c o n s t a n t s .  

The gas velocity and the rate of heat liberation in (i) are random functions. Conse- 
quently, the temperature, which is a functional of the velocities of the medium and the heat 
liberation, also becomes random. 

To obtain an equation for the structural function, (i) must be multiplied by the tempera- 
ture at adjacent points and the average must be taken. The main difficulty that occurs here 
is the evaluation of the correlation between the velocity of the medium and the product of the 
temperatures as well as of the temperature with the rate of heat liberation. To overcome it 
we assume that the velocities of the medium and the heat liberation are Gaussian 6-correlated 
processes in time. This permits utilization of the method of calculating the mean product of 
a function and a functional [9], for which a detailed exposition is contained in [10, ii], to 
determine the correlations mentioned. Let the velocities of the medium and the heat libera- 
tion be statistically stationary, homogeneous, isotropic, and not mutually correlated random 
functions with zero means. Then taking account of the incompressibility of the gas as well 
as the temperature fluctuations that permit linearization of the integrand in (i), we obtain 
the following equation for the structure function of a temperature field D(x) = <[T (x+~ 
t )  - T(y, t)]2>: 

x -~ {x ~ [R (x) + 2%] m'}'  - -  hD + h  ,[ W (g) m ([x + y[) dy = 4N (x), ( 3 )  

where R(x) = xixjx-2Rij is the longitudinal part of the structural tensor Rij: 

t 

Rij (x) : S < [v~ (y, t) - -  v~ (y + x, t)][vj (y, t 0 -- v~ ( y + x , / 0 ]  > dt,. (4)  

The quantity h has the meaning of a radiation cooling rate for an optically thin gas vol- 
Lime 

h -- 32• < T > ~ 
, ( 5 )  

9cp < T > 

where o is the Stefan-Boltzmann constant, and <T> is the mean absolute gas temperature 

! 

(x) .... ,[ < q (y, t) q (x %- y, q) > dr1. N ( 6 ) 

The function R(x) with the meaning of the coefficient of turbulent thermal diffusivity can be 
estimated as follows: 

~n-~x~, x ~ ~, ( 7 ) 

R(X) N x~-4/3x4/aNel/3x 4/3, ~ x ~ L ,  ( 7 a )  

el/3L4/3, x ~ L. ( 7 b )  

The c h a r a c t e r i s t i c  s c a l e  o f  t h e  s o u r c e  f u n c t i o n  N(x)  i s  t a k e n  e q u a l  t o  t h e  e x t e r n a l  s c a l e  
o f  t h e  v e l o c i t y  f i e l d  L by  a s s u m i n g  t h a t  N(x)  ~ N(0)  = N f o r  v a l u e s  o f  x b e l o n g i n g  t o  t h e  
d i s s i p a t i o n  i n t e r v a l  and i n e r t i a l  i n t e r v a l .  
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Let us turn to an analysis of the fundamental equation (3). If there is no radiation 
(h = 0), then (3) is solved exactly 

x y 

D (x) = ~ dyy -2 [R (y) -~- 2Z] -~ .!" 4N (z) z2dz. 
0 0 

(8) 

For the majority of substances v ~ X- Using this condition as well as the dependences (7), 
we obtain 

D (x) "" 

N(3%)-~x 2, x(( rl, (9)  

2Ne-l/ax2/3, ~] << x (( L, (9a)  

2Ne-Z/3L 2/a, x )) L, (9b)  

which agrees with the results in [2, 3]. Qualitatively, the correct form of the structural 
function that follows from (3) in the absence of radiation permits the hope that application 
of (3) to investigate the influence of radiant heat transfer will also result in physically 
reasonable results. 

Let us examine the influence of radiation on the structural function. 

i. Let the path length of a radiation quantum s defined as the reciprocal absorption 
coefficient, be less than the internal scale of turbulence (% << q). To clarify the form of 
the structural function in the dissipation interval, we discard the coefficient of turbulent 
thermal diffusivity R(x), which is small compared with the quantity X, and we solve the dif- 
ferential equation obtained by considering the integral term a known function. We consequent- 
ly obtain 

D ( x ) =  h .F(O)x2, x ~ n ,  ( i 0 )  
t2Z 

where 

4N (x) [ W/(y) D (Ix Jr Yl) dy. ( 11 ) F (x) -- h ,) 

The values of the arguments of the structural function under the integral sign in (Ii) are 
bounded by the quantum path length s << ~ for x = 0, which permits the determination of F(0) 
by using (i0) and finally obtaining 

D (x) = 2Nx"- (6Z + hl~) -~. (12)  

For x >> ~, and particularly for x >> ~, the st'ructural function changes slightly in an 
interval of order %, whichpermits utilization of the radiant heat conduction approximation: 

1 hi2]D,} '=4N(x)"  (13) x 21x"[R(x)@2%@ 3 

The solution of (13) differs from the solution of (8) in that the thermal diffusivity coeffi- 
cient in (8) is replaced by the sum of molecular and radiant thermal diffusivity coefficients: 

D (x) = of dyy-~ R (y) + 2)~ q- ~o hl~ 4N (z) z2dz. (14) 

It follows from (12)-(14) that the minimal intensity at which radiation influences the 
form of the structural function is determined by the condition 

hi* ~ Z. (15)  

The action of the radiation appears primarily in the dissipation interval, resulting in a 
diminution in the steepness of the quadratic section of the structural function as compared 
with the case of a nonradiating gas. As the radiation intensity grows, the x 2 section is 
propagated into the inertial domain of scales, as seen from (14), to the value of the argument 
x I defined by the relationship 
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R (xl) ~ hP.  ( 16 ) 

For x < x z, the structural function is independent of convective heat transfer and is deter- 
mined completely by radiation transport and molecular heat conduction. For x > x z, the in- 
fluence of radiation on the form of the structural function is negligible. 

If the radiation intensity is so large that 

hl 2 ~ R (L), ( 17 ) 

then (16), which defines the boundary of the section perturbed by radiation, has no meaning. 
In this case we obtain from (14) 

x x ,, 

0 0 
(18) 

from which it follows that D = [2N(0)/hs 2 for x << L, where N(x) can be considered constant, 
and depends substantially on the form of the source function N(x) for x - L. It is also seen 
from (18) that further growth of the radiation intensity results in a uniform diminution in 
the structural function for all values of its argument. 

Some of the results obtained can be interpreted by starting from relationships between 
the radiation ~x r and hydrodynamic ~x decay times for a temperature inhomogeneity of dimen- 
sion x: 

%r ,.. { h-i, x (< l, (19)  
h-~l-~x 2, x >) l, 

{Z -~x ~, x (( ~1, 
T x "  ~-1/3x2/3, ~ ( ( x ( ( L .  (20)  

If the radiation time is much greater than the hydrodynamic time, then the influence of radia- 
tion is not essential. The condition for the beginning of influence (15) corresponds to 
equality of the times (19) and (20) for ~ ~ x ~ D. As the radiation intensity grows further 
(increase in h), the domain of scales where radiation decay of the inhomogeneity proceeds 
more rapidly than the hydrodynamic, i.e., the domain of strong influence of radiation, ex- 
pands. Its boundary xl, determined by the equality of the times (19) and (20), agrees with 
that obtained from (16). 

2. Let the quantum path length be in the inertial interval of scales (D << s << L). The 
minimal radiation intensity influencing the form of the structural function is determined by 
the condition 

h - i ~  ~l, (21) 

which can be obtained by using perturbation theory by utilizing the structural function un- 
disturbed by radiation in (3). However, the case of strong radiation characterized by the 
inequality h -z << ~s is of fundamental interest. 

The behavior of the structural function in the inertial scale interval can be clarified 
by substituting the turbulent thermal diffusivity coefficient (7a) into (3) and neglecting 
the quantity X << R(x), Considering the function F(x) defined by the relationship (ii) to be 
known, as before, we obtain 

- - 7 / 2 .  i - - 7 / 2  8 t �9 D (z) = - -  F (z) - -  z - 7 / i K 7 / ~  " (z) ~ y 17/~_ (Y)(gSf ' ) 'dg - - z - 7 / 2  17/2 (z) g ' K7/2 (y)(y F ) dy, 
0 2 

(22)  

where 17/2 and KT/2 are Bessel function sol imaginary argument of order 7/2 

z = (X/Xo)I/3; (23)  

1 1 e /2h-3 /2 ;  (24)  
Xo = 27 
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x 0 is the scale at which the hydrodynamic decay time is compared to the volume deexcitation 
time h- It is easy to see that x 0 << Z in the case of strong radiation. 

For small and large z the function D(z) has simple asymptotics: 

D(z)=: F(O) ~ z ~  |, 
" 18 ~ '  (25)  

8 
D (z) . . . . .  F (z) - -  F' ( z ) - -  F" (z), z ~ 1, (26) 

z 

where the prime denotes differentiation with respect to z. 

Expanding the structural function D(Ix + Yl) in (ii) into power series in x and y up to 
quadratic terms inclusively for 

x o ~  x ~ l (27) 

and 

x>t  

r e p s e c t i v e l y ,  and s u b s t i t u t i n g  t h e  e x p r e s s i o n s  o b t a i n e d  f o r  F (z )  i n t o  (26 ) ,  
that in the domain of values 

(28) 

it can be shown 

Xo << x << "~1, (29)  

where x~ is determined from equality of the hydrodynamic and radiation decay times in the radi- 
ant heat conduction mode 

8--11/3 X ~ / 3  -4 2 _~ 
' = h "Xl/ ", ( 3 0 )  

t h e  p r o d u c t s  i n  (26)  can be n e g l e c t e d  and t h e  f o l l o w i n g  e q u a t i o n  o b t a i n e d :  

(x) = ] W (9) D (Ix + Yi) dy - -  4h-~N, (31)  D 

which does not contain hydrodynamic terms whose solution for constant N has the form 

D (x) = 2N (M~)-Ixt (32) 

From the merger condition for the solutions (32) and (26) we obtain the value of the con- 
stant F(0) for x 0. Hence, the structural function determined by (25) and (i0) for x < x 0 
acquires the form of an unperturbed structural function with power of the fluctuation sources 
diminished (hTs 3 times: 

{ N (hxz)-3(3X)-fx ~, x (( ~q, (33)  
D(x)..-, 2N(h.r,z)_3e_l/ax2/a ' ~ << x (< x0. 

Behavior of the structural function in the domain x > xz can be investigated on the basis 
of the asymptotic relationship (26); however, because of the inequality x I >> %, it is more 
natural to use the radiant heat conduction approximation that yields the same result as (26) 
in the inertial range but is also applicable for values of the arguments commensurate with 
the magnitude of the external scale of turbulence. In the mentioned approximation we have 
for the inertial interval for x >> s 

x 

D (x) ,,., .f 4Ngdy [3e 1';3 y 4/3 + ht"-]-t (34)  
0 

In the domain x < xl, the expression (34) agrees with (32), which is not surprising since the 
domains of applicability of these expressions overlap for s < x < x I. In the domain x > x I, 
as seen from (34), (14), and (8), the structural function is exactly the same as in a nonradi- 
ating gas. 

It was assumed implicitly in the preceding discussions that xl << L. If the mentioned 
inequality is spoiled, as holds under the condition 
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h>~zF 1Lg/a l-4/3 , ( 3 5 )  

then the structural function is determined by (18) for x > s 

3. Let the quantum path length exceed the external scale of turbulents (s >> L). In 
this case, the integral term in (3) equals D(=) and takes the form 

x -~ {x 2 [R (x) + 2%] D '} '  - -  h [D - -  D (oo)1 = 4N (x). ( 36 ) 

It can be shown by using perturbation theory that radiation starts to influence the form of 
the structural function noticeably for 

h-t  ~ TL" (37) 

E s t i m a t i n g  t h e  o r d e r  o f  m a g n i t u d e  o f  t e r m s  i n  ( 3 6 )  a s s o c i a t e d  w i t h  c o n v e c t i o n  and  h e a t  
conduction by means of the relationship 

x -~ {x ~ [R (x) + 2X] D'} '  N D ~)  ~21 ( 38 ) 

and comparing (38) with terms taking account of the influence of radiation, we can conclude 
that for sufficiently high intensities two scale domains exist with an opposite relationship 
between the radiation and hydrodynamic types separated by the scale x0 at which the times men- 
tioned are in agreement. We limit ourselves to the case when x 0 belongs to the inertial in- 
terval of the scales. 

In the domain x > x0, where radiation predominates over hydrodynamics, (36) is valid 
without the convection-heat conduction terms. Its solution has the form 

D(~ = 4h-i iN(O)--N(~].  ( 3 9 )  

Let us note that the result (39) also follows from (26) in the inertial range. 

The relationships (i0) and (25) are valid in the domain x < x0. To estimate F(0) we com- 
bine the solutions (39) and (25) at the point x0 by assuming that for x << L 

N (x) ~ N (0)[1 - -  x~L-~]. 

Consequently, we obtain the structural function for x < x0 

(40) 

N (h'5.)-~ (3Z)-~xL 

D (x) ,-~ 2N (h'q)-3e -1 /3  x 2/a, 

x ~ ~, 
(41) 

n ~ x ~ x0. 

It has the same dependence on the distance as in the absence of radiation; however the fluctu- 
ation amplitude is diminished (h~L) 3/2 times. 

4. Therefore, the influence of radiation on the form of the structural function reduces 
qualitatively to the following. 

For s << q, radiation heat transfer is felt primarily in the dissipation interval where 
the structural function becomes more and more shallow as the radiation grows when conserving 
the x 2 dependence. The boundary of~the square section is here shifted to the inertial scale 
interval. Outside the square section the structural function is the same as in the absence 
of radiation. 

For intermediate quantum path lengths (n << Z << L), the x = domain being generated for 
x ~ Z expands as the radiation grows. The "2/3" law holds outside the square section, where 
there is no influence of radiation in the domain of large scales and the fluctuation level is 
reduced strongly for small x as compared with the case of no radiation because of the smooth- 
ing action of radiation in the larger vortices of dimension -s 

For Z >> L, radiation influences the form of the structural function in the whole range 
of scales. For values of the argument of the order of the external scale, the form of the 
structural function is determined by the pumping mode. In the inertial interval in the do- 
main of small arguments where radiation decay of the inhomogeneities proceeds more slowly 
than the hydrodynamic, the "2/3" law is valid. As radiation grows, the size of the domain 
where the "2/3" law holds is reduced. The fluctuation amplitude is here lowered simultane- 
ously because of the smoothing action of radiation in large-scale inhomogeneities. 
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In conclusion, we present an estimate of the conditions under which radiation starts to 
influence the form of the structural function. Combining the conditions (15), (21), and (37), 
we obtain that the radiation effects become substantial for 

5 .10-5<T>~ 
Pv 

>_ 

lRe 
l "11/s 

- 7 - )  , n << l << L, 

I 
, Z L, 

L 

(42) 

where P is the gas pressure, atm; v is the fluctuating external scale velocity, m/sec; and Re 
is the Reynolds number of the external scale of turbulence. The value of the specific heat 
corresponding to a diatomic gas with frozen vibrations was used in deducing these conditions. 
It is seen from (42) that the minimal temperature Tmin for which the influence of radiation 
is possible is realized for Z = q. 

The flow parameters Re = 104 , v = 5-50 m/sec, P = 1 arm can be taken as typical parameters. 
Hence, Tmin ~ 560-990~ At such temperaturessmoothing of just the shallowest temperature 
inhomogeneities, of the order of the internal scale, is possible. The lowest temperature TL 
at which radiation smoothes the temperature fluctuations of the external scale is realized for 
s = L. We obtain from (42) for the parameters presented above for the medium: TL - 990-1760 
~ The temperatures for which distortion of the structural function in the inertial interval 

is possible lie between those mentioned. 

NOTATION 

T, temperature; v, velocity of the medium; q, thermal source power; X, thermal diffusiv- 
ity coefficient; p, Cp, the density and specific heat of the medium at constant pressure; <, 
absorption coefficient; s quantum path length; Bm, Planck function at the frequency m; W, 
function defined in (2); D, structural function of the temperature field; Rij(x), tensor de- 
fined in (4): R(x), longitudinal part of the tensor Rij; o, Stefan-Boltzmann constant; h, 
parameter defined in (5); N, power of the temperature inhomogeneity sources defined in (6); 
~, kinematic viscosity; q, L, the internal and external turbulence scales; ~, rate of kinetic 
energy dissipation; P, pressure; Re, Reynolds number; ~x, ~rx, hydrodynamic and radiation de- 
cay times of the temperature inhomogeneity of dimension x; x 0, x I, boundaries of strong in- 
fluence of radiation on the form of the structural function; • y, z, radius vectors; t, time; 
', derivative with respect to the coordinate; <...>, average over the ensemble. 
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MATHEMATICAL MODELING OF COMBINED HEAT TRANSFER 

IN DISPERSED MATERIALS 

O. M. Alifanov, B. P. Gerasimov, T. G. Elizarova, 
V. K. Zantsev, B. N. Chetverushkin, and E. V. Shil'nikov 

UDC 517.9:956.2/3 

We show that combined heat transfer in a dispersed medium can be modeled numeric- 
ally by treating convective and radiative-conductive heat transfer separately. 
We refine the radiative heat-transfer model by comparison with experiment. 

In the develoment of a thermal shield of various technical system and aggregates of dis- 
persed materials, it is necessary to study their thermal insulation properties in detail. The 
heat-transport mechanism in such materials is rather complicated, and includes heat transport 
directly as a result of the thermal conductivity of the material (conductive heat transport) 
and heat transport by radiation (radiative heat transport). If the porous medium is filled 
with gas, there mayalso be convective heat transfer. A purely experimental study of heat- 
transport processes and the resulting heat fluxes is difficult, and, therefore, a simultane- 
ous study by full-scale and numerical experiments can give good results [i, 2]. 

In the present article we consider the methodical aspects of the mathematical modeling 
of combined heat transfer in a dispersed material based on optically transparent dispersed 
silicic materials with a 90% and more porosity of the sample used. The samples were rect- 
angular parallelepipeds. It is required to determine the temperatureof the lower surface of 
the sample for a specified time dependence of the temperature of its upper surface. 

A general formulation of this problem includes the combined consideration of the system 
of equations describing radiative transport (taking account of absorption, emission, and scat- 
tering) and the laws of conservation of energy and momentum in the gas. The purpose of the 
study is to construct a mathematical model, to ascertain the role of each heat-transfer mech- 
anism, to compare various methods of calculation, and to develop the optimal approach to the 
solution of the problem. As the most reasonable and technically relatively simply realizable 
approach we propose a procedure based on the separate treatment of convective and radiative- 
conductive heat transfer. 

i. Investigation of Convective Heat Transport in a Porous Medium. We describe the non- 
linear filtration of a liquid in a porous medium by the Navier-Stokes equations, which in the 
Boussinesq approximation, taking account of Darcy's law, we write in the following form [3]: 

OV 1-vp + ~AV+ ~gT--/fV, (1) 
0---7--+ ( V v ) V  - -  O 

OT 
- -  + (~v) T = zAT, (2) 

0t  

v~=0, (3) 
where K = vdij/Cr Cr = kr is the penetrability, which characterizes the geometrical 
properties of the porous medium, cm2; the value of Cr does not depend on the kind of filter- 
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